Skip to content

Enterprise AI Agent Platforms

⏱️ Estimated reading time: 19 minutes

Introduction

Enterprise AI agent platforms provide production-ready infrastructure for deploying, managing, and scaling AI agents in business environments. These platforms offer enterprise-grade features including security, compliance, monitoring, and integration with existing business systems.

Major Enterprise Platforms

1. AWS Bedrock Agents

Overview

Amazon Bedrock Agents enable building and deploying AI agents that can execute multi-step tasks using foundation models and enterprise data.

Architecture

import boto3
from typing import Dict, List

class BedrockAgent:
    def __init__(self, agent_name: str):
        self.bedrock = boto3.client('bedrock-agent')
        self.bedrock_runtime = boto3.client('bedrock-agent-runtime')
        self.agent_name = agent_name

    def create_agent(self, config: Dict):
        """Create a new Bedrock agent."""
        response = self.bedrock.create_agent(
            agentName=self.agent_name,
            foundationModel='anthropic.claude-v2',
            instruction=config['instruction'],
            agentResourceRoleArn=config['role_arn'],
            actionGroups=[
                {
                    'actionGroupName': 'enterprise-tools',
                    'actionGroupExecutor': {
                        'lambda': config['lambda_arn']
                    },
                    'apiSchema': {
                        's3': {
                            's3BucketName': config['schema_bucket'],
                            's3ObjectKey': 'api-schema.yaml'
                        }
                    }
                }
            ],
            knowledgeBases=[
                {
                    'knowledgeBaseId': config['kb_id'],
                    'description': 'Enterprise knowledge base'
                }
            ]
        )
        return response['agent']['agentId']

    async def invoke_agent(self, prompt: str, session_id: str = None):
        """Invoke the agent with a prompt."""
        response = self.bedrock_runtime.invoke_agent(
            agentId=self.agent_id,
            agentAliasId=self.agent_alias_id,
            sessionId=session_id or str(uuid.uuid4()),
            inputText=prompt
        )

        # Stream the response
        for event in response['completion']:
            if 'chunk' in event:
                yield event['chunk']['bytes'].decode('utf-8')

Knowledge Base Integration

class BedrockKnowledgeBase:
    def __init__(self):
        self.bedrock = boto3.client('bedrock-agent')

    def create_knowledge_base(self, name: str, data_source: str):
        # Create knowledge base
        kb_response = self.bedrock.create_knowledge_base(
            name=name,
            roleArn='arn:aws:iam::123456789012:role/BedrockKBRole',
            knowledgeBaseConfiguration={
                'type': 'VECTOR',
                'vectorKnowledgeBaseConfiguration': {
                    'embeddingModelArn': 'arn:aws:bedrock:us-east-1::foundation-model/amazon.titan-embed-text-v1'
                }
            },
            storageConfiguration={
                'type': 'OPENSEARCH_SERVERLESS',
                'opensearchServerlessConfiguration': {
                    'collectionArn': 'arn:aws:aoss:us-east-1:123456789012:collection/kb-collection',
                    'vectorIndexName': 'bedrock-knowledge-base-index',
                    'fieldMapping': {
                        'vectorField': 'embedding',
                        'textField': 'text',
                        'metadataField': 'metadata'
                    }
                }
            }
        )

        # Add data source
        self.bedrock.create_data_source(
            knowledgeBaseId=kb_response['knowledgeBase']['knowledgeBaseId'],
            name=f'{name}-datasource',
            dataSourceConfiguration={
                'type': 'S3',
                's3Configuration': {
                    'bucketArn': f'arn:aws:s3:::{data_source}'
                }
            }
        )

2. Google Vertex AI Agents

Overview

Vertex AI Agents provide a comprehensive platform for building, deploying, and managing AI agents with Google's foundation models.

Implementation

from google.cloud import aiplatform
from google.cloud.aiplatform import agents

class VertexAIAgent:
    def __init__(self, project_id: str, location: str):
        aiplatform.init(project=project_id, location=location)
        self.project_id = project_id
        self.location = location

    def create_agent(self, agent_config: Dict):
        """Create a Vertex AI agent."""
        agent = agents.Agent.create(
            display_name=agent_config['name'],
            description=agent_config['description'],
            model_name='gemini-pro',
            tools=[
                agents.Tool(
                    function_declarations=[
                        agents.FunctionDeclaration(
                            name='search_database',
                            description='Search enterprise database',
                            parameters={
                                'type': 'object',
                                'properties': {
                                    'query': {'type': 'string'},
                                    'filters': {'type': 'object'}
                                }
                            }
                        )
                    ]
                )
            ],
            system_instruction=agent_config['system_prompt']
        )
        return agent

    def create_conversation(self, agent):
        """Create a conversation with the agent."""
        conversation = agent.start_conversation()
        return conversation

    async def send_message(self, conversation, message: str):
        """Send message to agent and get response."""
        response = await conversation.send_message_async(
            message,
            generation_config={
                'temperature': 0.7,
                'max_output_tokens': 2048,
            }
        )
        return response.text

Integration with Google Cloud Services

class VertexAIEnterpriseAgent:
    def __init__(self):
        self.bigquery = bigquery.Client()
        self.storage = storage.Client()
        self.firestore = firestore.Client()

    def setup_tools(self):
        """Configure enterprise tool integrations."""
        tools = [
            {
                'name': 'query_bigquery',
                'function': self.query_bigquery,
                'description': 'Query BigQuery data warehouse'
            },
            {
                'name': 'access_storage',
                'function': self.access_cloud_storage,
                'description': 'Access Cloud Storage files'
            },
            {
                'name': 'update_firestore',
                'function': self.update_firestore,
                'description': 'Update Firestore database'
            }
        ]
        return tools

    async def query_bigquery(self, sql: str):
        """Execute BigQuery SQL query."""
        query_job = self.bigquery.query(sql)
        results = query_job.result()
        return [dict(row) for row in results]

3. Microsoft Azure AI Agent Service

Overview

Azure AI Agent Service provides enterprise-grade agent deployment with deep integration into the Microsoft ecosystem.

Implementation

from azure.ai.agents import AgentClient
from azure.identity import DefaultAzureCredential

class AzureAIAgent:
    def __init__(self, endpoint: str, deployment_name: str):
        self.credential = DefaultAzureCredential()
        self.client = AgentClient(
            endpoint=endpoint,
            credential=self.credential
        )
        self.deployment_name = deployment_name

    def create_agent(self, config: Dict):
        """Create an Azure AI agent."""
        agent = self.client.agents.create(
            deployment_name=self.deployment_name,
            model='gpt-4',
            name=config['name'],
            instructions=config['instructions'],
            tools=[
                {
                    'type': 'code_interpreter',
                    'enabled': True
                },
                {
                    'type': 'retrieval',
                    'retrieval': {
                        'search_type': 'hybrid',
                        'top_k': 5
                    }
                },
                {
                    'type': 'function',
                    'function': {
                        'name': 'query_dynamics',
                        'description': 'Query Dynamics 365',
                        'parameters': {...}
                    }
                }
            ],
            file_ids=config.get('file_ids', [])
        )
        return agent

    async def run_agent(self, agent_id: str, prompt: str):
        """Run the agent with a prompt."""
        thread = self.client.threads.create()

        message = self.client.messages.create(
            thread_id=thread.id,
            role='user',
            content=prompt
        )

        run = self.client.runs.create(
            thread_id=thread.id,
            assistant_id=agent_id
        )

        # Wait for completion
        while run.status in ['queued', 'in_progress']:
            await asyncio.sleep(1)
            run = self.client.runs.retrieve(
                thread_id=thread.id,
                run_id=run.id
            )

        # Get messages
        messages = self.client.messages.list(thread_id=thread.id)
        return messages.data[0].content

4. Salesforce Einstein Agents

Overview

Einstein Agents bring AI capabilities directly into Salesforce CRM, enabling intelligent automation of sales and service processes.

Configuration

from simple_salesforce import Salesforce
import requests

class EinsteinAgent:
    def __init__(self, username: str, password: str, security_token: str):
        self.sf = Salesforce(
            username=username,
            password=password,
            security_token=security_token
        )
        self.einstein_url = 'https://api.einstein.ai/v2'

    def create_service_agent(self, config: Dict):
        """Create a customer service agent."""
        agent_config = {
            'name': config['name'],
            'type': 'SERVICE_AGENT',
            'capabilities': [
                'CASE_CLASSIFICATION',
                'SENTIMENT_ANALYSIS',
                'RESPONSE_GENERATION',
                'KNOWLEDGE_SEARCH'
            ],
            'knowledge_bases': [
                {
                    'type': 'SALESFORCE_KNOWLEDGE',
                    'object': 'Knowledge__kav'
                },
                {
                    'type': 'CASE_HISTORY',
                    'lookback_days': 90
                }
            ],
            'automation_rules': [
                {
                    'trigger': 'NEW_CASE',
                    'actions': ['CLASSIFY', 'ROUTE', 'SUGGEST_RESPONSE']
                }
            ]
        }

        response = requests.post(
            f'{self.einstein_url}/agents',
            json=agent_config,
            headers=self.get_auth_headers()
        )
        return response.json()

    def process_case(self, case_id: str, agent_id: str):
        """Process a support case with the agent."""
        case = self.sf.Case.get(case_id)

        response = requests.post(
            f'{self.einstein_url}/agents/{agent_id}/process',
            json={
                'input': {
                    'subject': case['Subject'],
                    'description': case['Description'],
                    'priority': case['Priority']
                }
            },
            headers=self.get_auth_headers()
        )

        result = response.json()

        # Update case with agent recommendations
        self.sf.Case.update(case_id, {
            'Category__c': result['classification'],
            'Sentiment__c': result['sentiment'],
            'Suggested_Response__c': result['suggested_response']
        })

        return result

5. ServiceNow AI Agents

Overview

ServiceNow provides AI agents for IT service management, automating incident resolution and service requests.

Implementation

import requests
from typing import Dict, List

class ServiceNowAgent:
    def __init__(self, instance: str, username: str, password: str):
        self.instance = instance
        self.auth = (username, password)
        self.base_url = f'https://{instance}.service-now.com/api'

    def create_virtual_agent(self, config: Dict):
        """Create a virtual agent for IT support."""
        agent_config = {
            'name': config['name'],
            'type': 'virtual_agent',
            'topics': [
                {
                    'name': 'Password Reset',
                    'intent': 'reset_password',
                    'flow': 'password_reset_flow'
                },
                {
                    'name': 'Software Installation',
                    'intent': 'install_software',
                    'flow': 'software_install_flow'
                }
            ],
            'nlp_provider': 'servicenow_nlu',
            'integrations': ['active_directory', 'software_catalog']
        }

        response = requests.post(
            f'{self.base_url}/now/va/agents',
            json=agent_config,
            auth=self.auth
        )
        return response.json()

    def handle_incident(self, incident_number: str):
        """Automatically handle an incident."""
        # Get incident details
        incident = self.get_incident(incident_number)

        # Analyze with AI
        analysis = requests.post(
            f'{self.base_url}/now/ai/analyze',
            json={'text': incident['description']},
            auth=self.auth
        ).json()

        # Find similar resolved incidents
        similar = self.find_similar_incidents(
            incident['description'],
            limit=5
        )

        # Generate resolution
        resolution = self.generate_resolution(
            incident=incident,
            analysis=analysis,
            similar_incidents=similar
        )

        # Update incident
        self.update_incident(incident_number, {
            'work_notes': resolution['explanation'],
            'resolution_code': resolution['code'],
            'close_notes': resolution['summary']
        })

        return resolution

6. Snowflake Cortex Agents

Overview

Snowflake Cortex provides AI agents that operate directly on data warehouse data, enabling intelligent data analysis and automation.

Implementation

import snowflake.connector
from snowflake.ml.model import ModelRegistry

class SnowflakeCortexAgent:
    def __init__(self, account: str, user: str, password: str):
        self.conn = snowflake.connector.connect(
            account=account,
            user=user,
            password=password
        )
        self.cursor = self.conn.cursor()

    def create_data_agent(self, config: Dict):
        """Create an agent for data analysis."""
        # Create agent function
        create_agent_sql = f"""
        CREATE OR REPLACE FUNCTION {config['name']}_agent(prompt STRING)
        RETURNS TABLE(response STRING, data VARIANT)
        LANGUAGE PYTHON
        RUNTIME_VERSION = '3.9'
        PACKAGES = ('snowflake-ml-python', 'pandas')
        HANDLER = 'DataAgent.process'
        AS '''
import pandas as pd
from snowflake.ml.llm import complete

class DataAgent:
    @staticmethod
    def process(prompt):
        # Analyze prompt to determine data needs
        analysis = complete(
            model='llama2-70b',
            prompt=f"Analyze this request and determine SQL needed: {prompt}"
        )

        # Generate and execute SQL
        sql = analysis['sql']
        df = pd.read_sql(sql, connection)

        # Generate insights
        insights = complete(
            model='llama2-70b',
            prompt=f"Provide insights on this data: {df.to_json()}"
        )

        return [(insights, df.to_dict())]
        ''';
        """

        self.cursor.execute(create_agent_sql)

        # Create stored procedure for autonomous operation
        create_proc_sql = f"""
        CREATE OR REPLACE PROCEDURE {config['name']}_autonomous()
        RETURNS STRING
        LANGUAGE SQL
        AS
        BEGIN
            -- Scheduled autonomous operations
            CALL {config['name']}_agent('Analyze daily sales trends');
            CALL {config['name']}_agent('Identify anomalies in user behavior');
            CALL {config['name']}_agent('Generate executive summary');
            RETURN 'Autonomous analysis complete';
        END;
        """

        self.cursor.execute(create_proc_sql)

7. Specialized Enterprise Platforms

Lindy.ai

class LindyAgent:
    """No-code platform for business automation."""

    def create_workflow(self, config: Dict):
        workflow = {
            'name': config['name'],
            'trigger': {
                'type': 'email',
                'conditions': {'subject_contains': 'invoice'}
            },
            'actions': [
                {
                    'type': 'extract_data',
                    'source': 'email_attachment',
                    'format': 'invoice'
                },
                {
                    'type': 'update_system',
                    'target': 'accounting_software',
                    'mapping': config['field_mapping']
                },
                {
                    'type': 'send_notification',
                    'channel': 'slack',
                    'message': 'Invoice processed: {invoice_number}'
                }
            ]
        }
        return workflow

IBM watsonx Assistant

class WatsonxAgent:
    def __init__(self, api_key: str, url: str):
        self.authenticator = IAMAuthenticator(api_key)
        self.assistant = AssistantV2(
            version='2024-01-01',
            authenticator=self.authenticator
        )
        self.assistant.set_service_url(url)

    def create_assistant(self, config: Dict):
        response = self.assistant.create_assistant(
            name=config['name'],
            description=config['description'],
            language='en',
            assistant_id=config['assistant_id']
        ).get_result()

        # Add skills
        for skill in config['skills']:
            self.add_skill(response['assistant_id'], skill)

        return response

Enterprise Features Comparison

Platform Strengths Integration Pricing Model Best For
AWS Bedrock Scalability, Multi-model AWS ecosystem Pay-per-use Cloud-native apps
Google Vertex ML capabilities Google Cloud Pay-per-use Data-heavy workflows
Azure AI Microsoft integration Office 365, Dynamics Subscription Enterprise Microsoft
Salesforce Einstein CRM integration Salesforce ecosystem Per-user Sales & Service
ServiceNow ITSM focus IT systems Platform license IT operations
Snowflake Cortex Data warehouse native Data platforms Compute credits Analytics

Security & Compliance

Enterprise Security Features

class EnterpriseSecurityAgent:
    def __init__(self):
        self.encryption = AES256Encryption()
        self.audit_logger = AuditLogger()
        self.compliance_checker = ComplianceChecker()

    def secure_execution(self, func, *args, **kwargs):
        # Pre-execution security checks
        self.compliance_checker.verify_operation(func.__name__)

        # Encrypt sensitive data
        encrypted_args = self.encryption.encrypt_sensitive(args)

        # Log operation
        self.audit_logger.log_operation(
            operation=func.__name__,
            user=self.get_current_user(),
            timestamp=datetime.now(),
            data_classification=self.classify_data(args)
        )

        try:
            # Execute with monitoring
            result = func(*encrypted_args, **kwargs)

            # Post-execution validation
            self.validate_output(result)

            return result

        except Exception as e:
            self.audit_logger.log_security_event(
                event_type='EXECUTION_FAILURE',
                details=str(e)
            )
            raise

Compliance Requirements

class ComplianceAgent:
    def __init__(self):
        self.regulations = {
            'GDPR': GDPRCompliance(),
            'HIPAA': HIPAACompliance(),
            'SOC2': SOC2Compliance(),
            'PCI': PCICompliance()
        }

    def ensure_compliance(self, data, operation):
        for regulation, checker in self.regulations.items():
            if checker.applies_to(data):
                checker.validate(data, operation)
                checker.apply_controls(data)

Deployment Patterns

Multi-Region Deployment

class MultiRegionAgent:
    def __init__(self):
        self.regions = {
            'us-east-1': USEastAgent(),
            'eu-west-1': EUWestAgent(),
            'ap-southeast-1': APSoutheastAgent()
        }

    def route_request(self, request):
        # Determine optimal region
        region = self.get_optimal_region(
            user_location=request.user_location,
            data_residency=request.data_requirements,
            latency_requirements=request.sla
        )

        return self.regions[region].process(request)

Best Practices

1. Scalability Design

class ScalableEnterpriseAgent:
    def __init__(self):
        self.connection_pool = ConnectionPool(max_size=100)
        self.cache = RedisCache()
        self.rate_limiter = RateLimiter(requests_per_second=1000)

    async def handle_request(self, request):
        # Check cache
        cached = await self.cache.get(request.cache_key)
        if cached:
            return cached

        # Rate limiting
        await self.rate_limiter.acquire()

        # Process with connection pooling
        async with self.connection_pool.acquire() as conn:
            result = await self.process(request, conn)

        # Cache result
        await self.cache.set(request.cache_key, result, ttl=300)

        return result

2. Monitoring & Observability

class MonitoredEnterpriseAgent:
    def __init__(self):
        self.metrics = MetricsCollector()
        self.tracer = DistributedTracer()
        self.health_checker = HealthChecker()

    @self.tracer.trace()
    @self.metrics.measure()
    async def execute(self, task):
        span = self.tracer.start_span('agent_execution')

        try:
            # Record metrics
            self.metrics.increment('tasks.started')
            start_time = time.time()

            result = await self.process_task(task)

            # Record success metrics
            self.metrics.increment('tasks.completed')
            self.metrics.record('task.duration', time.time() - start_time)

            return result

        except Exception as e:
            self.metrics.increment('tasks.failed')
            span.set_tag('error', True)
            raise

        finally:
            span.finish()

Conclusion

Enterprise AI agent platforms provide the infrastructure, security, and scalability required for production deployments. The choice of platform depends on existing technology stack, compliance requirements, and specific use cases. Key considerations include integration capabilities, security features, scalability, and total cost of ownership.

Resources

Documentation

Enterprise Guides

Next Steps